Integrálási segédlet

f(x) ⁣dx=F(x)+C \int f(x) \dd x = F(x) + C

Táblázatok

Alapesetek

f(x)f(x)F(x)F(x)
kkkx+Ckx + C
xnx^nxn+1n+1+C\dfrac{x^{n+1}}{n+1} + C
1x\dfrac{1}{x}lnx+C\ln \abs{x} + C
exe^xex+Ce^x + C
axa^xaxlna+C\dfrac{a^x}{\ln a} + C

Szögfüggvények

f(x)f(x)F(x)F(x)
sinx\sin xcosx+C-\cos x + C
cosx\cos xsinx+C\sin x + C
1cos2x\dfrac{1}{\cos^2 x}tanx+C\tan x + C
1sin2x\dfrac{1}{\sin^2 x}cotx+C-\cot x + C
11x2\dfrac{1}{\sqrt{1-x^2}}arcsinx+C\arcsin x + C
11x2\dfrac{-1}{\sqrt{1-x^2}}arccosx+C\arccos x + C
11+x2\dfrac{1}{1+x^2}arctanx+C\arctan x + C
11+x2\dfrac{-1}{1+x^2}arccotx+C\arccot x + C

Hiperbolikus függvények

f(x)f(x)F(x)F(x)
sinhx\sinh xcoshx+C\cosh x + C
coshx\cosh xsinhx+C\sinh x + C
1cosh2x\dfrac{1}{\cosh^2 x}tanhx+C\tanh x + C
1sinh2x\dfrac{1}{\sinh^2 x}cothx+C\coth x + C
1x2+1\dfrac{1}{\sqrt{x^2+1}}arcsinhx+C\arcsinh x + C
1x21\dfrac{1}{\sqrt{x^2-1}}arccoshx+C\arccosh x + C
11x2\dfrac{1}{1-x^2}arctanhx+C\arctanh x + C
1x21\dfrac{1}{x^2-1}arccothx+C\arccoth x + C

Linearitás teljesülése

λf(x) ⁣dx=λf(x) ⁣dxf(x)+g(x) ⁣dx=f(x) ⁣dx+g(x) ⁣dxabf(x) ⁣dx=acf(x) ⁣dx+cbf(x) ⁣dx \begin{gathered} \int \lambda f(x) \dd x = \lambda \int f(x) \dd x \\ \int f(x) + g(x) \dd x = \int f(x) \dd x + \int g(x) \dd x \\ \int_{a}^{b} f(x) \dd x = \int_{a}^{c} f(x) \dd x + \int_{c}^{b} f(x) \dd x \end{gathered}

Partiális integrálás

f(x)g(x) ⁣dx=f(x)g(x)f(x)g(x) ⁣dx \int f'(x) g(x) \dd x = f(x) g(x) - \int f(x) g'(x) \dd x

Helyettesítéses integrálás

ef(x)f(x) ⁣dx=ef(x)+Cf(x)f(x) ⁣dx=lnf(x)+Cfn(x)f(x) ⁣dx=fn+1(x)n+1+Cf(g(x))g(x) ⁣dx=F(g(x))+C \begin{aligned} \int e^{f(x)} f'(x) \dd x &= e^{f(x)} + C \\ \int \frac{f'(x)}{f(x)} \dd x &= \ln \abs{f(x)} + C \\ \int f^n(x) f'(x) \dd x &= \frac{f^{n+1}(x)}{n+1} + C \\ \int f(g(x)) g'(x) \dd x &= F(g(x)) + C \end{aligned}